Getting Started

This chapter will be about getting started with Git. We will begin by explaining some background on
version control tools, then move on to how to get Git running on your system and finally how to get
it set up to start working with. At the end of this chapter you should understand why Git is around,
why you should use it and you should be all set up to do so.

About Version Control

Control Systems

Snapshots, Not Differences

Nearly Every Operation Is Local

Git Has Integrity

Git Generally Only Adds Data

The Three States

e The Command Line
e Installing Git

e First-Time Git Setup

About Version Control

What is “version control”, and why should you care? Version control is a system that records

changes to a file or set of files over time so that you can recall specific versions later. For the
examples in this book, you will use software source code as the files being version controlled,
though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you would most certainly want to), a Version Control System (VCS) is a very wise thing to use. It
allows you to revert selected files back to a previous state, revert the entire project back to a
previous state, compare changes over time, see who last modified something that might be
causing a problem, who introduced an issue and when, and more. Using a VCS also generally
means that if you screw things up or lose files, you can easily recover. In addition, you get all this
for very little overhead.

Control Systems

Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’'re clever). This approach is very common because it is so simple,
but it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally
write to the wrong file or copy over files you don’'t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database
that kept all the changes to files under revision control.

Legcalversienccontrotdagram

Figure 1. Local version control.

One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a
special format on disk; it can then re-create what any file looked like at any point in time by adding
up all the patches.

Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that
contains all the versioned files, and a number of clients that check out files from that central place.
For many years, this has been the standard for version control.

Geptralizedversionueantriol diagram

Figure 2. Centralized version control.

This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and it’s far easier to administer a CVCS than it is to deal with local
databases on every client.

However, this setup also has some serious downsides. The most obvious is the single point of
failure that the centralized server represents. If that server goes down for an hour, then during that
hour nobody can collaborate at all or save versioned changes to anything they’re working on. If the
hard disk the central database is on becomes corrupted, and proper backups haven’t been kept,
you lose absolutely everything — the entire history of the project except whatever single snapshots
people happen to have on their local machines. Local VCS systems suffer from this same problem
— whenever you have the entire history of the project in a single place, you risk losing everything.

Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git,
Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of the files; rather, they
fully mirror the repository, including its full history. Thus, if any server dies, and these systems
were collaborating via that server, any of the client repositories can be copied back up to the
server to restore it. Every clone is really a full backup of all the data.

Disieibatechyersipnueantnel diagram

Figure 3. Distributed version control.

Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the
information they store as a set of files and the changes made to each file over time (this is
commonly described as delta-based version control).

bteringtdata astghangesvto a base version of each file.

Figure 4. Storing data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a series of
shapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file
again, just a link to the previous identical file it has already stored. Git thinks about its data more
like a stream of snapshots.

Gifstanesdata @sesmapshots of the project over time.

Figure 5. Storing data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. We’'ll explore some of the benefits you gain by thinking of your

data this way when we cover Git branching in Git Branching.

https://coderz.ca/progit/#ch03-git-branching

Nearly Every Operation Is Local

Most operations in Git need only local files and resources to operate — generally no information is
needed from another computer on your network. If you're used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out to the server to get
the history and display it for you — it simply reads it directly from your local database. This means
you see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a
local difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you're offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily (to your local copy,
remember?) until you get to a network connection to upload. If you go home and can’t get your
VPN client working properly, you can still work. In many other systems, doing so is either
impossible or painful. In Perforce, for example, you can't do much when you aren’t connected to
the server; in Subversion and CVS, you can edit files, but you can't commit changes to your
database (because your database is offline). This may not seem like a huge deal, but you may be
surprised what a big difference it can make.

Git Has Integrity

Everything in Git is checksummed before it is stored and is then referred to by that checksum. This
means it's impossible to change the contents of any file or directory without Git knowing about it.
This functionality is built into Git at the lowest levels and is integral to its philosophy. You can’t lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0-9 and a-f) and calculated based on the contents of
a file or directory structure in Git. A SHA-1 hash looks something like this:

4b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything in its database not by file name but by the hash value of its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is hard to get
the system to do anything that is not undoable or to make it erase data in any way. As with any
VCS, you can lose or mess up changes you haven’t committed yet, but after you commit a
snapshot into Git, it is very difficult to lose, especially if you regularly push your database to
another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover

data that seems lost, see Undoing Things.

https://coderz.ca/progit/#_undoing

The Three States

Pay attention now — here is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: committed,
modified, and staged:

e Committed means that the data is safely stored in your local database.

e Modified means that you have changed the file but have not committed it to your
database yet.

e Staged means that you have marked a modified file in its current version to go into your
next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the working tree, and the
staging area.

Wegkingrtreepstagingarea, and Git directory.

Figure 6. Working tree, staging area, and Git directory.

The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another
computer.

The working tree is a single checkout of one version of the project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that stores information about
what will go into your next commit. Its technical name in Git parlance is the “index”, but the phrase
“staging area” works just as well.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage just those changes you want to be part of your next commit, which
adds only those changes to the staging area.

3. You do a commit, which takes the files as they are in the staging area and stores that
snapshot permanently to your Git directory.

If a particular version of a file is in the Git directory, it's considered committed. If it has been
modified and was added to the staging area, it is staged. And if it was changed since it was

checked out but has not been staged, it is modified. In Git Basics, you’ll learn more about these
states and how you can either take advantage of them or skip the staged part entirely.

https://coderz.ca/progit/#ch02-git-basics-chapter

The Command Line

There are a lot of different ways to use Git. There are the original command-line tools, and there
are many graphical user interfaces of varying capabilities. For this book, we will be using Git on the
command line. For one, the command line is the only place you can run all Git commands — most
of the GUIs implement only a partial subset of Git functionality for simplicity. If you know how to
run the command-line version, you can probably also figure out how to run the GUI version, while
the opposite is not necessarily true. Also, while your choice of graphical client is a matter of
personal taste, all users will have the command-line tools installed and available.

So we will expect you to know how to open Terminal in macOS or Command Prompt or PowerShell
in Windows. If you don’t know what we're talking about here, you may need to stop and research
that quickly so that you can follow the rest of the examples and descriptions in this book.

Installing Git

Before you start using Git, you have to make it available on your computer. Even if it's already
installed, it's probably a good idea to update to the latest version. You can either install it as a
package or via another installer, or download the source code and compile it yourself.

This book was written using Git version 2.8.0. Though
most of the commands we use should work even in ancient
versions of Git, some of them might not or might act
slightly differently if you're using an older version. Since
Git is quite excellent at preserving backwards
compatibility, any version after 2.0 should work just fine.

Installing on Linux

If you want to install the basic Git tools on Linux via a binary installer, you can generally do so
through the package management tool that comes with your distribution. If you’re on Fedora (or
any closely-related RPM-based distribution, such as RHEL or CentOS), you can use dnf :

sudo dnf install git-all

If you're on a Debian-based distribution, such as Ubuntu, try apt :

sudo apt install git-all

For more options, there are instructions for installing on several different Unix distributions on the

Git website, at https://git-scm.com/download/linux.

Installing on macQOS

There are several ways to install Git on a Mac. The easiest is probably to install the Xcode
Command Line Tools. On Mavericks (10.9) or above you can do this simply by trying to run git from
the Terminal the very first time.

git --version

If you don’t have it installed already, it will prompt you to install it.

If you want a more up to date version, you can also install it via a binary installer. A macOS Git
installer is maintained and available for download at the Git website, at https://git-

scm.com/download/mac.

https://git-scm.com/download/linux
https://git-scm.com/download/mac
https://git-scm.com/download/mac

Gitgnac@onmnstallerunknown
Figure 7. Git macOS Installer.

You can also install it as part of the GitHub for macOS install. Their GUI Git tool has an option to
install command line tools as well. You can download that tool from the GitHub for macOS website,

at https://desktop.github.com.

Installing on Windows

There are also a few ways to install Git on Windows. The most official build is available for
download on the Git website. Just go to https://git-scm.com/download/win and the download will
start automatically. Note that this is a project called Git for Windows, which is separate from Git

itself; for more information on it, go to https://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note that the Chocolatey
package is community maintained.

Another easy way to get Git installed is by installing GitHub Desktop. The installer includes a
command line version of Git as well as the GUI. It also works well with PowerShell, and sets up solid
credential caching and sane CRLF settings. We’'ll learn more about those things a little later, but

suffice it to say they’re things you want. You can download this from the GitHub Desktop website.

Installing from Source

Some people may instead find it useful to install Git from source, because you’ll get the most
recent version. The binary installers tend to be a bit behind, though as Git has matured in recent
years, this has made less of a difference.

If you do want to install Git from source, you need to have the following libraries that Git depends
on: autotools, curl, zlib, openssl, expat, and libiconv. For example, if you’'re on a system that has
dnf (such as Fedora) or apt-get (such as a Debian-based system), you can use one of these
commands to install the minimal dependencies for compiling and installing the Git binaries:

sudo dnf install dh-autoreconf curl-devel expat-devel gettext-devel \
openssl-devel perl-devel zlib-devel
sudo apt-get install dh-autoreconf libcurl4-gnutls-dev libexpatl-dev \

gettext libz-dev libssl-dev

In order to be able to add the documentation in various formats (doc, html, info), these additional
dependencies are required (Note: users of RHEL and RHEL-derivatives like CentOS and Scientific

Linux will have to enable the EPEL repository to download the docbook2X package):

https://desktop.github.com/
https://git-scm.com/download/win
https://gitforwindows.org/
https://chocolatey.org/packages/git
https://desktop.github.com/
https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F

$ sudo dnf install asciidoc xmlto docbook2X

$ sudo apt-get install asciidoc xmlto docbook2x

If you're using a Debian-based distribution (Debian/Ubuntu/Ubuntu-derivatives), you also need the
install-info package:

sudo apt-get install install-info

If you're using a RPM-based distribution (Fedora/RHEL/RHEL-derivatives), you also need the getopt
package (which is already installed on a Debian-based distro):

sudo dnf install getopt
sudo apt-get install getopt

Additionally, if you're using Fedora/RHEL/RHEL-derivatives, you need to do this

sudo ln -s /usr/bin/db2x docbook2texi /usr/bin/docbook2x- texi

due to binary name differences.

When you have all the necessary dependencies, you can go ahead and grab the latest tagged
release tarball from several places. You can get it via the kernel.org site, at

https://www.kernel.org/pub/software/scm/git, or the mirror on the GitHub website, at
https://github.com/git/git/releases. It's generally a little clearer what the latest version is on the

GitHub page, but the kernel.org page also has release signatures if you want to verify your
download.

Then, compile and install:

tar -zxf git-2.0.0. tar.gz
cd git-2.0.0

make configure

. /configure --prefix=/usr
make all doc info

sudo make install install-doc install-html install-info

After this is done, you can also get Git via Git itself for updates:

git clone git: //git. kernel. org/pub/scm/git/git. git

https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/releases

First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; they’ll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that
control all aspects of how Git looks and operates. These variables can be stored in three different
places:

1. /etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config , it reads and writes from this
file specifically. (Because this is a system configuration file, you would need
administrative or superuser privilege to make changes to it.)

2. ~/.gitconfig or ~/.config/git/config file: Values specific personally to you, the user. You
can make Git read and write to this file specifically by passing the --global option, and
this affects all of the repositories you work with on your system.

3. config file in the Git directory (that is, . git/config) of whatever repository you're
currently using: Specific to that single repository. You can force Git to read from and write
to this file with the --1local option, but that is in fact the default. (Unsurprisingly, you
need to be located somewhere in a Git repository for this option to work properly.)

Each level overrides values in the previous level, so values in . git/config trump those in
/etc/gitconfig .

On Windows systems, Git looks for the . gitconfig file in the $HOME directory (C: \Users\$USER for
most people). It also still looks for /etc/gitconfig , although it’s relative to the MSys root, which is
wherever you decide to install Git on your Windows system when you run the installer. If you are
using version 2.x or later of Git for Windows, there is also a system-level config file at C: \Documents
and Settings\All Users\Application Data\Git\config on Windows XP, and in

C: \ProgrambData\Git\config on Windows Vista and newer. This config file can only be changed by
git config -f <file> as an admin.

You can view all of your settings and where they are coming from using:
git config --1list --show-origin

Your Identity

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and it’s immutably baked into the

commits you start creating:

git config --global user.name "John Doe"

git config --global user.email johndoe@example. com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or email address for specific projects, you can run the command without the --
global option when you’re in that project.

Many of the GUI tools will help you do this when you first run them.

Your Editor

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your system’s default editor.

If you want to use a different text editor, such as Emacs, you can do the following:

git config --global core. editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to
its executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesn’t support all plug-ins. If you are on a
32-bit Windows system, or you have a 64-bit editor on a 64-bit system, you’ll type something like
this:

git config --global core.editor "'C: /Program Files/Notepad++/notepad++. exe' -multilnst -

osession”

If you have a 32-bit editor on a 64-bit system, the program will be installed in C: \Program Files
(x86) :

git config --global core. editor "'C: /Program Files (x86)/Notepad++/notepad++. exe' -multiInst

1osession"

Vim, Emacs and Notepad++ are popular text editors often
used by developers on Unix-based systems like Linux and
macOS or a Windows system. If you are not familiar with
these editors, you may need to search for specific
instructions for how to set up your favorite editor with Git.

You may find, if you don’t setup your editor like this, you
get into a really confusing state when Git attempts to
launch it. An example on a Windows system may include a
prematurely terminated Git operation during a Git initiated
edit.

Checking Your Settings

If you want to check your configuration settings, you can use the git config --list command to
list all the settings Git can find at that point:

git config --1list

ser. name=John Doe

ser. email=johndoe@example. com
olor. status=auto

olor. branch=auto

olor. interactive=auto

olor. diff=auto

You may see keys more than once, because Git reads the same key from different files (
/etc/gitconfig and ~/.gitconfig , for example). In this case, Git uses the last value for each unique
key it sees.

You can also check what Git thinks a specific key’s value is by typing git config <key> :

git config user. name

ohn Doe

Since Git might read the same configuration variable value
from more than one file, it's possible that you have an
unexpected value for one of these values and you don’t
know why. In cases like that, you can query Git as to the
origin for that value, and it will tell you which configuration
file had the final say in setting that value:

git config --show-origin
arere. autoUpdate

ile: /home/johndoe/. gitconfig[false

Getting Help

If you ever need help while using Git, there are two equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

git help <verb>

man git- <verb>

For example, you can get the manpage help for the git config command by running

git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book aren’t enough and you need in-person help, you can try the #git or #github channel
on the Freenode IRC server, which can be found at https://freenode.net. These channels are

regularly filled with hundreds of people who are all very knowledgeable about Git and are often
willing to help.

In addition, if you don’t need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise “help” output with the -h
or --help options, as in:

git add -h

sage: git add [<options>] [--] <pathspec>...

-n, --dry-run dry run

-V, --verbose be verbose

-i, --interactive interactive picking

-p, --patch select hunks interactively

-e, --edit edit current diff and apply

-f, --force allow adding otherwise ignored files

-u, --update update tracked files

--renormalize renormalize EOL of tracked files (implies -u)

-N, --intent-to-add record only the fact that the path will be added later

-A --all add changes from all tracked and untracked files
--ignore-removal ignore paths removed in the working tree (same as --no-all)
--refresh don' t add, only refresh the index

--ignore-errors just skip files which cannot be added because of errors
--ignore-missing check if - even missing - files are ignored in dry run

--chmod (4 -)x override the executable bit of the listed files

https://freenode.net/

Summary

You should have a basic understanding of what Git is and how it’s different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system that’s set up with your personal identity. It's now time to learn some

Git basics.

