
Content for this wiki is adapted from the Pro Git book, written by Scott Chacon and Ben Straub and
published by Apress. https://git-scm.com/book/en/v2 Licence This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of
this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0 or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

Preface
What is Git?
A Short History of Git
Getting Started

About Version Control
Control Systems
Snapshots, Not Differences
Nearly Every Operation Is Local
Git Has Integrity
Git Generally Only Adds Data
The Three States
The Command Line
Installing Git
First-Time Git Setup

Git Basics

Getting a Git Repository
Recording Changes to the Repository
Checking the Status of Your Files
Ignoring Files
Viewing Your Staged and Unstaged Changes
Committing Your Changes
Skipping the Staging Area
Removing Files

Git like a Pro

Moving Files
Viewing the Commit History
Limiting Log Output
Undoing Things
Unstaging a Staged File
Unmodifying a Modified File
Working with Remotes
Showing Your Remotes
Adding Remote Repositories
Fetching and Pulling from Your Remotes
Pushing to Your Remotes
Inspecting a Remote
Renaming and Removing Remotes

Welcome to the second edition of Pro Git. The first edition was published over four years ago now.
Since then a lot has changed and yet many important things have not. While most of the core
commands and concepts are still valid today as the Git core team is pretty fantastic at keeping
things backward compatible, there have been some significant additions and changes in the
community surrounding Git. The second edition of this book is meant to address those changes and
update the book so it can be more helpful to the new user.

When I wrote the first edition, Git was still a relatively difficult to use and barely adopted tool for
the harder core hacker. It was starting to gain steam in certain communities, but had not reached
anywhere near the ubiquity it has today. Since then, nearly every open source community has
adopted it. Git has made incredible progress on Windows, in the explosion of graphical user
interfaces to it for all platforms, in IDE support and in business use. The Pro Git of four years ago
knows about none of that. One of the main aims of this new edition is to touch on all of those new
frontiers in the Git community.

The Open Source community using Git has also exploded. When I originally sat down to write the
book nearly five years ago (it took me a while to get the first version out), I had just started
working at a very little known company developing a Git hosting website called GitHub. At the time
of publishing there were maybe a few thousand people using the site and just four of us working on
it. As I write this introduction, GitHub is announcing our 10 millionth hosted project, with nearly 5

Preface

Preface by Scott Chacon

million registered developer accounts and over 230 employees. Love it or hate it, GitHub has
heavily changed large swaths of the Open Source community in a way that was barely conceivable
when I sat down to write the first edition.

I wrote a small section in the original version of Pro Git about GitHub as an example of hosted Git
which I was never very comfortable with. I didn’t much like that I was writing what I felt was
essentially a community resource and also talking about my company in it. While I still don’t love
that conflict of interests, the importance of GitHub in the Git community is unavoidable. Instead of
an example of Git hosting, I have decided to turn that part of the book into more deeply describing
what GitHub is and how to effectively use it. If you are going to learn how to use Git then knowing
how to use GitHub will help you take part in a huge community, which is valuable no matter which
Git host you decide to use for your own code.

The other large change in the time since the last publishing has been the development and rise of
the HTTP protocol for Git network transactions. Most of the examples in the book have been
changed to HTTP from SSH because it’s so much simpler.

It’s been amazing to watch Git grow over the past few years from a relatively obscure version
control system to basically dominating commercial and open source version control. I’m happy that
Pro Git has done so well and has also been able to be one of the few technical books on the market
that is both quite successful and fully open source.

I hope you enjoy this updated edition of Pro Git.

The first edition of this book is what got me hooked on Git. This was my introduction to a style of
making software that felt more natural than anything I had seen before. I had been a developer for
several years by then, but this was the right turn that sent me down a much more interesting path
than the one I was on.

Now, years later, I’m a contributor to a major Git implementation, I’ve worked for the largest Git
hosting company, and I’ve traveled the world teaching people about Git. When Scott asked if I’d be
interested in working on the second edition, I didn’t even have to think.

It’s been a great pleasure and privilege to work on this book. I hope it helps you as much as it did
me.

To my wife, Becky, without whom this adventure never would have begun. — Ben

This edition is dedicated to my girls. To my wife Jessica who has supported me for all of these years
and to my daughter Josephine, who will support me when I’m too old to know what’s going on. —

Preface by Ben Straub

Dedications

Scott

Since this is an Open Source book, we have gotten several errata and content changes donated
over the years. Here are all the people who have contributed to the English version of Pro Git as an
open source project. Thank you everyone for helping make this a better book for everyone.

Contributors

So, what is Git in a nutshell? This is an important section to absorb, because if you understand
what Git is and the fundamentals of how it works, then using Git effectively will probably be much
easier for you. As you learn Git, try to clear your mind of the things you may know about other
VCSs, such as CVS, Subversion or Perforce — doing so will help you avoid subtle confusion when
using the tool. Even though Git’s user interface is fairly similar to these other VCSs, Git stores and
thinks about information in a very different way, and understanding these differences will help you
avoid becoming confused while using it.

What is Git?

As with many great things in life, Git began with a bit of creative destruction and fiery controversy.

The Linux kernel is an open source software project of fairly large scope. For most of the lifetime of
the Linux kernel maintenance (1991–2002), changes to the software were passed around as
patches and archived files. In 2002, the Linux kernel project began using a proprietary DVCS called
BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the
commercial company that developed BitKeeper broke down, and the tool’s free-of-charge status
was revoked. This prompted the Linux development community (and in particular Linus Torvalds,
the creator of Linux) to develop their own tool based on some of the lessons they learned while
using BitKeeper. Some of the goals of the new system were as follows:

Speed
Simple design
Strong support for non-linear development (thousands of parallel branches)
Fully distributed
Able to handle large projects like the Linux kernel efficiently (speed and data size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. It’s amazingly fast, it’s very efficient with large projects, and it has an incredible
branching system for non-linear development (See Git Branching).

A Short History of Git

https://coderz.ca/progit/#ch03-git-branching

This chapter will be about getting started with Git. We will begin by explaining some background on
version control tools, then move on to how to get Git running on your system and finally how to get
it set up to start working with. At the end of this chapter you should understand why Git is around,
why you should use it and you should be all set up to do so.

Getting Started

Getting Started

What is “version control”, and why should you care? Version control is a system that records
changes to a file or set of files over time so that you can recall specific versions later. For the
examples in this book, you will use software source code as the files being version controlled,
though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you would most certainly want to), a Version Control System (VCS) is a very wise thing to use. It
allows you to revert selected files back to a previous state, revert the entire project back to a
previous state, compare changes over time, see who last modified something that might be
causing a problem, who introduced an issue and when, and more. Using a VCS also generally
means that if you screw things up or lose files, you can easily recover. In addition, you get all this
for very little overhead.

About Version Control

Getting Started

Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple,
but it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally
write to the wrong file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database
that kept all the changes to files under revision control.

Local version control diagramImage not found or type unknown
Figure 1. Local version control.
One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a
special format on disk; it can then re-create what any file looked like at any point in time by adding
up all the patches.

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that
contains all the versioned files, and a number of clients that check out files from that central place.
For many years, this has been the standard for version control.

Centralized version control diagramImage not found or type unknown
Figure 2. Centralized version control.
This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and it’s far easier to administer a CVCS than it is to deal with local
databases on every client.

However, this setup also has some serious downsides. The most obvious is the single point of
failure that the centralized server represents. If that server goes down for an hour, then during that
hour nobody can collaborate at all or save versioned changes to anything they’re working on. If the
hard disk the central database is on becomes corrupted, and proper backups haven’t been kept,
you lose absolutely everything — the entire history of the project except whatever single snapshots
people happen to have on their local machines. Local VCS systems suffer from this same problem
— whenever you have the entire history of the project in a single place, you risk losing everything.

Control Systems
Local Version Control Systems

Centralized Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git,
Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of the files; rather, they
fully mirror the repository, including its full history. Thus, if any server dies, and these systems
were collaborating via that server, any of the client repositories can be copied back up to the
server to restore it. Every clone is really a full backup of all the data.

Distributed version control diagramImage not found or type unknown
Figure 3. Distributed version control.
Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

Distributed Version Control Systems

Getting Started

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the
information they store as a set of files and the changes made to each file over time (this is
commonly described as delta-based version control).

Storing data as changes to a base version of each file.Image not found or type unknown
Figure 4. Storing data as changes to a base version of each file.
Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a series of
snapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file
again, just a link to the previous identical file it has already stored. Git thinks about its data more
like a stream of snapshots.

Git stores data as snapshots of the project over time.Image not found or type unknown
Figure 5. Storing data as snapshots of the project over time.
This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. We’ll explore some of the benefits you gain by thinking of your
data this way when we cover Git branching in Git Branching.

Snapshots, Not Differences

https://coderz.ca/progit/#ch03-git-branching

Getting Started

Most operations in Git need only local files and resources to operate — generally no information is
needed from another computer on your network. If you’re used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out to the server to get
the history and display it for you — it simply reads it directly from your local database. This means
you see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a
local difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily (to your local copy,
remember?) until you get to a network connection to upload. If you go home and can’t get your
VPN client working properly, you can still work. In many other systems, doing so is either
impossible or painful. In Perforce, for example, you can’t do much when you aren’t connected to
the server; in Subversion and CVS, you can edit files, but you can’t commit changes to your
database (because your database is offline). This may not seem like a huge deal, but you may be
surprised what a big difference it can make.

Nearly Every Operation Is Local

Getting Started

Everything in Git is checksummed before it is stored and is then referred to by that checksum. This
means it’s impossible to change the contents of any file or directory without Git knowing about it.
This functionality is built into Git at the lowest levels and is integral to its philosophy. You can’t lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0–9 and a–f) and calculated based on the contents of
a file or directory structure in Git. A SHA-1 hash looks something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything in its database not by file name but by the hash value of its contents.

Git Has Integrity

Getting Started

When you do actions in Git, nearly all of them only add data to the Git database. It is hard to get
the system to do anything that is not undoable or to make it erase data in any way. As with any
VCS, you can lose or mess up changes you haven’t committed yet, but after you commit a
snapshot into Git, it is very difficult to lose, especially if you regularly push your database to
another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover
data that seems lost, see Undoing Things.

Git Generally Only Adds Data

https://coderz.ca/progit/#_undoing

Getting Started

Pay attention now — here is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: committed,
modified, and staged:

Committed means that the data is safely stored in your local database.
Modified means that you have changed the file but have not committed it to your
database yet.
Staged means that you have marked a modified file in its current version to go into your
next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the working tree, and the
staging area.

Working tree, staging area, and Git directory.Image not found or type unknown
Figure 6. Working tree, staging area, and Git directory.
The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another
computer.

The working tree is a single checkout of one version of the project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that stores information about
what will go into your next commit. Its technical name in Git parlance is the “index”, but the phrase
“staging area” works just as well.

The basic Git workflow goes something like this:

1. You modify files in your working tree.
2. You selectively stage just those changes you want to be part of your next commit, which

adds only those changes to the staging area.
3. You do a commit, which takes the files as they are in the staging area and stores that

snapshot permanently to your Git directory.

If a particular version of a file is in the Git directory, it’s considered committed. If it has been
modified and was added to the staging area, it is staged. And if it was changed since it was
checked out but has not been staged, it is modified. In Git Basics, you’ll learn more about these
states and how you can either take advantage of them or skip the staged part entirely.

The Three States

https://coderz.ca/progit/#ch02-git-basics-chapter

Getting Started

There are a lot of different ways to use Git. There are the original command-line tools, and there
are many graphical user interfaces of varying capabilities. For this book, we will be using Git on the
command line. For one, the command line is the only place you can run all Git commands — most
of the GUIs implement only a partial subset of Git functionality for simplicity. If you know how to
run the command-line version, you can probably also figure out how to run the GUI version, while
the opposite is not necessarily true. Also, while your choice of graphical client is a matter of
personal taste, all users will have the command-line tools installed and available.

So we will expect you to know how to open Terminal in macOS or Command Prompt or PowerShell
in Windows. If you don’t know what we’re talking about here, you may need to stop and research
that quickly so that you can follow the rest of the examples and descriptions in this book.

The Command Line

Getting Started

Before you start using Git, you have to make it available on your computer. Even if it’s already
installed, it’s probably a good idea to update to the latest version. You can either install it as a
package or via another installer, or download the source code and compile it yourself.

This book was written using Git version 2.8.0. Though
most of the commands we use should work even in ancient
versions of Git, some of them might not or might act
slightly differently if you’re using an older version. Since
Git is quite excellent at preserving backwards
compatibility, any version after 2.0 should work just fine.

If you want to install the basic Git tools on Linux via a binary installer, you can generally do so
through the package management tool that comes with your distribution. If you’re on Fedora (or
any closely-related RPM-based distribution, such as RHEL or CentOS), you can use dnf :

$ sudo dnf install git-all

If you’re on a Debian-based distribution, such as Ubuntu, try apt :

$ sudo apt install git-all

For more options, there are instructions for installing on several different Unix distributions on the
Git website, at https://git-scm.com/download/linux.

There are several ways to install Git on a Mac. The easiest is probably to install the Xcode
Command Line Tools. On Mavericks (10.9) or above you can do this simply by trying to run git from
the Terminal the very first time.

$ git --version

If you don’t have it installed already, it will prompt you to install it.

If you want a more up to date version, you can also install it via a binary installer. A macOS Git
installer is maintained and available for download at the Git website, at https://git-

Installing Git

Installing on Linux

Installing on macOS

https://git-scm.com/download/linux
https://git-scm.com/download/mac

scm.com/download/mac.

Git macOS installer.Image not found or type unknown
Figure 7. Git macOS Installer.
You can also install it as part of the GitHub for macOS install. Their GUI Git tool has an option to
install command line tools as well. You can download that tool from the GitHub for macOS website,
at https://desktop.github.com.

There are also a few ways to install Git on Windows. The most official build is available for
download on the Git website. Just go to https://git-scm.com/download/win and the download will
start automatically. Note that this is a project called Git for Windows, which is separate from Git
itself; for more information on it, go to https://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note that the Chocolatey
package is community maintained.

Another easy way to get Git installed is by installing GitHub Desktop. The installer includes a
command line version of Git as well as the GUI. It also works well with PowerShell, and sets up solid
credential caching and sane CRLF settings. We’ll learn more about those things a little later, but
suffice it to say they’re things you want. You can download this from the GitHub Desktop website.

Some people may instead find it useful to install Git from source, because you’ll get the most
recent version. The binary installers tend to be a bit behind, though as Git has matured in recent
years, this has made less of a difference.

If you do want to install Git from source, you need to have the following libraries that Git depends
on: autotools, curl, zlib, openssl, expat, and libiconv. For example, if you’re on a system that has
dnf (such as Fedora) or apt-get (such as a Debian-based system), you can use one of these
commands to install the minimal dependencies for compiling and installing the Git binaries:

$ sudo dnf install dh-autoreconf curl-devel expat-devel gettext-devel \

 openssl-devel perl-devel zlib-devel

$ sudo apt-get install dh-autoreconf libcurl4-gnutls-dev libexpat1-dev \

 gettext libz-dev libssl-dev

In order to be able to add the documentation in various formats (doc, html, info), these additional
dependencies are required (Note: users of RHEL and RHEL-derivatives like CentOS and Scientific
Linux will have to enable the EPEL repository to download the docbook2X package):

Installing on Windows

Installing from Source

https://git-scm.com/download/mac
https://desktop.github.com/
https://git-scm.com/download/win
https://gitforwindows.org/
https://chocolatey.org/packages/git
https://desktop.github.com/
https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F

$ sudo dnf install asciidoc xmlto docbook2X

$ sudo apt-get install asciidoc xmlto docbook2x

If you’re using a Debian-based distribution (Debian/Ubuntu/Ubuntu-derivatives), you also need the
install-info package:

$ sudo apt-get install install-info

If you’re using a RPM-based distribution (Fedora/RHEL/RHEL-derivatives), you also need the getopt
 package (which is already installed on a Debian-based distro):

$ sudo dnf install getopt

$ sudo apt-get install getopt

Additionally, if you’re using Fedora/RHEL/RHEL-derivatives, you need to do this

$ sudo ln -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

due to binary name differences.

When you have all the necessary dependencies, you can go ahead and grab the latest tagged
release tarball from several places. You can get it via the kernel.org site, at
https://www.kernel.org/pub/software/scm/git, or the mirror on the GitHub website, at
https://github.com/git/git/releases. It’s generally a little clearer what the latest version is on the
GitHub page, but the kernel.org page also has release signatures if you want to verify your
download.

Then, compile and install:

$ tar -zxf git-2.0.0.tar.gz

$ cd git-2.0.0

$ make configure

$./configure --prefix=/usr

$ make all doc info

$ sudo make install install-doc install-html install-info

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/releases

Getting Started

Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; they’ll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that
control all aspects of how Git looks and operates. These variables can be stored in three different
places:

1. /etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config , it reads and writes from this
file specifically. (Because this is a system configuration file, you would need
administrative or superuser privilege to make changes to it.)

2. ~/.gitconfig or ~/.config/git/config file: Values specific personally to you, the user. You
can make Git read and write to this file specifically by passing the --global option, and
this affects all of the repositories you work with on your system.

3. config file in the Git directory (that is, .git/config) of whatever repository you’re
currently using: Specific to that single repository. You can force Git to read from and write
to this file with the --local option, but that is in fact the default. (Unsurprisingly, you
need to be located somewhere in a Git repository for this option to work properly.)

Each level overrides values in the previous level, so values in .git/config trump those in
/etc/gitconfig .

On Windows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Users\$USER for
most people). It also still looks for /etc/gitconfig , although it’s relative to the MSys root, which is
wherever you decide to install Git on your Windows system when you run the installer. If you are
using version 2.x or later of Git for Windows, there is also a system-level config file at C:\Documents
and Settings\All Users\Application Data\Git\config on Windows XP, and in
C:\ProgramData\Git\config on Windows Vista and newer. This config file can only be changed by
git config -f <file> as an admin.

You can view all of your settings and where they are coming from using:

$ git config --list --show-origin

First-Time Git Setup

Your Identity

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and it’s immutably baked into the
commits you start creating:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or email address for specific projects, you can run the command without the --
global option when you’re in that project.

Many of the GUI tools will help you do this when you first run them.

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your system’s default editor.

If you want to use a different text editor, such as Emacs, you can do the following:

$ git config --global core.editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to
its executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesn’t support all plug-ins. If you are on a
32-bit Windows system, or you have a 64-bit editor on a 64-bit system, you’ll type something like
this:

$ git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe' -multiInst -

nosession"

If you have a 32-bit editor on a 64-bit system, the program will be installed in C:\Program Files
(x86) :

$ git config --global core.editor "'C:/Program Files (x86)/Notepad++/notepad++.exe' -multiInst

-nosession"

Your Editor

Vim, Emacs and Notepad++ are popular text editors often
used by developers on Unix-based systems like Linux and
macOS or a Windows system. If you are not familiar with
these editors, you may need to search for specific
instructions for how to set up your favorite editor with Git.

You may find, if you don’t setup your editor like this, you
get into a really confusing state when Git attempts to
launch it. An example on a Windows system may include a
prematurely terminated Git operation during a Git initiated
edit.

If you want to check your configuration settings, you can use the git config --list command to
list all the settings Git can find at that point:

$ git config --list

user.name=John Doe

user.email=johndoe@example.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different files (
/etc/gitconfig and ~/.gitconfig , for example). In this case, Git uses the last value for each unique
key it sees.

You can also check what Git thinks a specific key’s value is by typing git config <key> :

$ git config user.name

John Doe

Checking Your Settings

Since Git might read the same configuration variable value
from more than one file, it’s possible that you have an
unexpected value for one of these values and you don’t
know why. In cases like that, you can query Git as to the
origin for that value, and it will tell you which configuration
file had the final say in setting that value:

$ git config --show-origin

rerere.autoUpdate

file:/home/johndoe/.gitconfig	false

If you ever need help while using Git, there are two equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

$ git help <verb>

$ man git-<verb>

For example, you can get the manpage help for the git config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book aren’t enough and you need in-person help, you can try the #git or #github channel
on the Freenode IRC server, which can be found at https://freenode.net. These channels are
regularly filled with hundreds of people who are all very knowledgeable about Git and are often
willing to help.

In addition, if you don’t need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise “help” output with the -h
 or --help options, as in:

$ git add -h

usage: git add [<options>] [--] <pathspec>...

 -n, --dry-run dry run

 -v, --verbose be verbose

Getting Help

https://freenode.net/

 -i, --interactive interactive picking

 -p, --patch select hunks interactively

 -e, --edit edit current diff and apply

 -f, --force allow adding otherwise ignored files

 -u, --update update tracked files

 --renormalize renormalize EOL of tracked files (implies -u)

 -N, --intent-to-add record only the fact that the path will be added later

 -A, --all add changes from all tracked and untracked files

 --ignore-removal ignore paths removed in the working tree (same as --no-all)

 --refresh don't add, only refresh the index

 --ignore-errors just skip files which cannot be added because of errors

 --ignore-missing check if - even missing - files are ignored in dry run

 --chmod (+|-)x override the executable bit of the listed files

You should have a basic understanding of what Git is and how it’s different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system that’s set up with your personal identity. It’s now time to learn some
Git basics.

Summary

Git Basics

Git Basics

You typically obtain a Git repository in one of two ways:

1. You can take a local directory that is currently not under version control, and turn it into a
Git repository, or

2. You can clone an existing Git repository from elsewhere.

In either case, you end up with a Git repository on your local machine, ready for work.

If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that project’s directory. If you’ve never done this, it
looks a little different depending on which system you’re running:

for Linux:

$ cd /home/user/my_project

for macOS:

$ cd /Users/user/my_project

for Windows:

$ cd /c/user/my_project

and type:

$ git init

This creates a new subdirectory named .git that contains all of your necessary repository files —
a Git repository skeleton. At this point, nothing in your project is tracked yet. (See Git Internals for
more information about exactly what files are contained in the .git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. You can accomplish that with a few
git add commands that specify the files you want to track, followed by a git commit :

Getting a Git Repository

Initializing a Repository in an Existing Directory

https://coderz.ca/progit/#ch10-git-internals

$ git add *.c

$ git add LICENSE

$ git commit -m 'initial project version'

We’ll go over what these commands do in just a minute. At this point, you have a Git repository
with tracked files and an initial commit.

If you want to get a copy of an existing Git repository — for example, a project you’d like to
contribute to — the command you need is git clone . If you’re familiar with other VCS systems
such as Subversion, you’ll notice that the command is "clone" and not "checkout". This is an
important distinction — instead of getting just a working copy, Git receives a full copy of nearly all
data that the server has. Every version of every file for the history of the project is pulled down by
default when you run git clone . In fact, if your server disk gets corrupted, you can often use
nearly any of the clones on any client to set the server back to the state it was in when it was
cloned (you may lose some server-side hooks and such, but all the versioned data would be there
— see Getting Git on a Server for more details).

You clone a repository with git clone <url> . For example, if you want to clone the Git linkable
library called libgit2 , you can do so like this:

$ git clone https://github.com/libgit2/libgit2

That creates a directory named libgit2 , initializes a .git directory inside it, pulls down all the
data for that repository, and checks out a working copy of the latest version. If you go into the new
libgit2 directory that was just created, you’ll see the project files in there, ready to be worked on
or used.

If you want to clone the repository into a directory named something other than libgit2 , you can
specify the new directory name as an additional argument:

$ git clone https://github.com/libgit2/libgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called mylibgit
.

Git has a number of different transfer protocols you can use. The previous example uses the
https:// protocol, but you may also see git:// or user@server:path/to/repo.git , which uses the
SSH transfer protocol. Getting Git on a Serverwill introduce all of the available options the server
can set up to access your Git repository and the pros and cons of each.

Cloning an Existing Repository

https://coderz.ca/progit/#_getting_git_on_a_server
https://coderz.ca/progit/#_getting_git_on_a_server

Git Basics

At this point, you should have a bona fide Git repository on your local machine, and a checkout or
working copy of all of its files in front of you. Typically, you’ll want to start making changes and
committing snapshots of those changes into your repository each time the project reaches a state
you want to record.

Remember that each file in your working directory can be in one of two states: tracked or
untracked. Tracked files are files that were in the last snapshot; they can be unmodified, modified,
or staged. In short, tracked files are files that Git knows about.

Untracked files are everything else — any files in your working directory that were not in your last
snapshot and are not in your staging area. When you first clone a repository, all of your files will be
tracked and unmodified because Git just checked them out and you haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since your last commit.
As you work, you selectively stage these modified files and then commit all those staged changes,
and the cycle repeats.

The lifecycle of the status of your files.Image not found or type unknown
Figure 8. The lifecycle of the status of your files.

Recording Changes to the Repository

Git Basics

The main tool you use to determine which files are in which state is the git status command. If
you run this command directly after a clone, you should see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

This means you have a clean working directory; in other words, none of your tracked files are
modified. Git also doesn’t see any untracked files, or they would be listed here. Finally, the
command tells you which branch you’re on and informs you that it has not diverged from the same
branch on the server. For now, that branch is always “master”, which is the default; you won’t
worry about it here. Git Branching will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and
you run git status , you see your untracked file like so:

$ echo 'My Project' > README

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Untracked files”
heading in your status output. Untracked basically means that Git sees a file you didn’t have in the
previous snapshot (commit); Git won’t start including it in your commit snapshots until you
explicitly tell it to do so. It does this so you don’t accidentally begin including generated binary files
or other files that you did not mean to include. You do want to start including README , so let’s start
tracking the file.

Checking the Status of Your Files

Tracking New Files

https://coderz.ca/progit/#ch03-git-branching

In order to begin tracking a new file, you use the command git add . To begin tracking the README
 file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged
to be committed:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

You can tell that it’s staged because it’s under the “Changes to be committed” heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the
subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran
git add <files> — that was to begin tracking files in your directory. The git add command takes a
path name for either a file or a directory; if it’s a directory, the command adds all the files in that
directory recursively.

Let’s change a file that was already tracked. If you change a previously tracked file called
CONTRIBUTING.md and then run your git status command again, you get something that looks like
this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

Staging Modified Files

 modified: CONTRIBUTING.md

The CONTRIBUTING.md file appears under a section named “Changes not staged for commit” — which
means that a file that is tracked has been modified in the working directory but not yet staged. To
stage it, you run the git add command. git add is a multipurpose command — you use it to begin
tracking new files, to stage files, and to do other things like marking merge-conflicted files as
resolved. It may be helpful to think of it more as “add precisely this content to the next commit”
rather than “add this file to the project”. Let’s run git add now to stage the CONTRIBUTING.md file,
and then run git status again:

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and
make that change, and you’re ready to commit. However, let’s run git status one more time:

$ vim CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It
turns out that Git stages a file exactly as it is when you run the git add command. If you commit
now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it
will go into the commit, not the version of the file as it looks in your working directory when you
run git commit . If you modify a file after you run git add , you have to run git add again to stage
the latest version of the file:

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short
status flag so you can see your changes in a more compact way. If you run git status -s or git
status --short you get a far more simplified output from the command:

$ git status -s

 M README

MM Rakefile

A lib/git.rb

M lib/simplegit.rb

?? LICENSE.txt

New files that aren’t tracked have a ?? next to them, new files that have been added to the
staging area have an A , modified files have an M and so on. There are two columns to the output
— the left-hand column indicates the status of the staging area and the right-hand column
indicates the status of the working tree. So for example in that output, the README file is modified
in the working directory but not yet staged, while the lib/simplegit.rb file is modified and staged.
The Rakefile was modified, staged and then modified again, so there are changes to it that are
both staged and unstaged.

Short Status

Git Basics

Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore . Here is an example .gitignore file:

$ cat .gitignore

*.[oa]

*~

The first line tells Git to ignore any files ending in “.o” or “.a” — object and archive files that may
be the product of building your code. The second line tells Git to ignore all files whose names end
with a tilde (~), which is used by many text editors such as Emacs to mark temporary files. You
may also include a log, tmp, or pid directory; automatically generated documentation; and so on.
Setting up a .gitignore file for your new repository before you get going is generally a good idea
so you don’t accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.
Standard glob patterns work, and will be applied recursively throughout the entire working
tree.
You can start patterns with a forward slash (/) to avoid recursivity.
You can end patterns with a forward slash (/) to specify a directory.
You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero
or more characters; [abc] matches any character inside the brackets (in this case a, b, or c); a
question mark (?) matches a single character; and brackets enclosing characters separated by a
hyphen ([0-9]) matches any character between them (in this case 0 through 9). You can also use
two asterisks to match nested directories; a/**/z would match a/z , a/b/z , a/b/c/z , and so on.

Here is another example .gitignore file:

ignore all .a files

*.a

but do track lib.a, even though you're ignoring .a files above

!lib.a

Ignoring Files

only ignore the TODO file in the current directory, not subdir/TODO

/TODO

ignore all files in any directory named build

build/

ignore doc/notes.txt, but not doc/server/arch.txt

doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories

doc/**/*.pdf

GitHub maintains a fairly comprehensive list of good
.gitignore file examples for dozens of projects and

languages at https://github.com/github/gitignore if you
want a starting point for your project.

In the simple case, a repository might have a single
.gitignore file in its root directory, which applies

recursively to the entire repository. However, it is also
possible to have additional .gitignore files in
subdirectories. The rules in these nested .gitignore files
apply only to the files under the directory where they are
located. (The Linux kernel source repository has 206
.gitignore files.)

It is beyond the scope of this book to get into the details of
multiple .gitignore files; see man gitignore for the
details.

https://github.com/github/gitignore

Git Basics

If the git status command is too vague for you — you want to know exactly what you changed,
not just which files were changed — you can use the git diff command. We’ll cover git diff in
more detail later, but you’ll probably use it most often to answer these two questions: What have
you changed but not yet staged? And what have you staged that you are about to commit?
Although git status answers those questions very generally by listing the file names, git diff
 shows you the exact lines added and removed — the patch, as it were.

Let’s say you edit and stage the README file again and then edit the CONTRIBUTING.md file without
staging it. If you run your git status command, you once again see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

To see what you’ve changed but not yet staged, type git diff with no other arguments:

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your PR;

Viewing Your Staged and Unstaged
Changes

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your change

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR

 that highlights your work in progress (and note in the PR title that it's

That command compares what is in your working directory with what is in your staging area. The
result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use git diff --
staged . This command compares your staged changes to your last commit:

$ git diff --staged

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+My Project

It’s important to note that git diff by itself doesn’t show all changes made since your last commit
— only changes that are still unstaged. If you’ve staged all of your changes, git diff will give you
no output.

For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to
see the changes in the file that are staged and the changes that are unstaged. If our environment
looks like this:

$ git add CONTRIBUTING.md

$ echo '# test line' >> CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

Now you can use git diff to see what is still unstaged:

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 643e24f..87f08c8 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -119,3 +119,4 @@ at the

 ## Starter Projects

 See our [projects list](https://github.com/libgit2/libgit2/blob/development/PROJECTS.md).

+# test line

and git diff --cached to see what you’ve staged so far (--staged and --cached are synonyms):

$ git diff --cached

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your PR;

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your change

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR

 that highlights your work in progress (and note in the PR title that it's

We will continue to use the git diff command in various
ways throughout the rest of the book. There is another
way to look at these diffs if you prefer a graphical or
external diff viewing program instead. If you run git
difftool instead of git diff , you can view any of these
diffs in software like emerge, vimdiff and many more
(including commercial products). Run git difftool --
tool-help to see what is available on your system.

Git Diff in an External Tool

Git Basics

Now that your staging area is set up the way you want it, you can commit your changes.
Remember that anything that is still unstaged — any files you have created or modified that you
haven’t run git add on since you edited them — won’t go into this commit. They will stay as
modified files on your disk. In this case, let’s say that the last time you ran git status , you saw
that everything was staged, so you’re ready to commit your changes. The simplest way to commit
is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s EDITOR environment variable —
usually vim or emacs, although you can configure it with whatever you want using the git config
--global core.editor command as you saw in Getting Started).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

Your branch is up-to-date with 'origin/master'.

#

Changes to be committed:

#	new file: README

#	modified: CONTRIBUTING.md

#

~

~

~

".git/COMMIT_EDITMSG" 9L, 283C

You can see that the default commit message contains the latest output of the git status
 command commented out and one empty line on top. You can remove these comments and type
your commit message, or you can leave them there to help you remember what you’re committing.
(For an even more explicit reminder of what you’ve modified, you can pass the -v option to git
commit . Doing so also puts the diff of your change in the editor so you can see exactly what
changes you’re committing.) When you exit the editor, Git creates your commit with that commit
message (with the comments and diff stripped out).

Committing Your Changes

https://coderz.ca/progit/#ch01-getting-started

Alternatively, you can type your commit message inline with the commit command by specifying it
after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master 463dc4f] Story 182: Fix benchmarks for speed

 2 files changed, 2 insertions(+)

 create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given you some output
about itself: which branch you committed to (master), what SHA-1 checksum the commit has (
463dc4f), how many files were changed, and statistics about lines added and removed in the
commit.

Remember that the commit records the snapshot you set up in your staging area. Anything you
didn’t stage is still sitting there modified; you can do another commit to add it to your history.
Every time you perform a commit, you’re recording a snapshot of your project that you can revert
to or compare to later.

Git Basics

Although it can be amazingly useful for crafting commits exactly how you want them, the staging
area is sometimes a bit more complex than you need in your workflow. If you want to skip the
staging area, Git provides a simple shortcut. Adding the -a option to the git commit command
makes Git automatically stage every file that is already tracked before doing the commit, letting
you skip the git add part:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -a -m 'added new benchmarks'

[master 83e38c7] added new benchmarks

 1 file changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the CONTRIBUTING.md file in this case before you
commit. That’s because the -a flag includes all changed files. This is convenient, but be careful;
sometimes this flag will cause you to include unwanted changes.

Skipping the Staging Area

Git Basics

To remove a file from Git, you have to remove it from your tracked files (more accurately, remove
it from your staging area) and then commit. The git rm command does that, and also removes the
file from your working directory so you don’t see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the “Changes not
staged for commit” (that is, unstaged) area of your git status output:

$ rm PROJECTS.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

Then, if you run git rm , it stages the file’s removal:

$ git rm PROJECTS.md

rm 'PROJECTS.md'

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: PROJECTS.md

The next time you commit, the file will be gone and no longer tracked. If you modified the file or
had already added it to the staging area, you must force the removal with the -f option. This is a
safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snapshot
and that can’t be recovered from Git.

Removing Files

Another useful thing you may want to do is to keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have
Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore
 file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use
the --cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can
do things such as:

$ git rm log/*.log

Note the backslash (\) in front of the * . This is necessary because Git does its own filename
expansion in addition to your shell’s filename expansion. This command removes all files that have
the .log extension in the log/ directory. Or, you can do something like this:

$ git rm *~

This command removes all files whose names end with a ~ .

Git Basics

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you rename a file in
Git, no metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart
about figuring that out after the fact — we’ll deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in Git, you can
run something like:

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git
considers it a renamed file:

$ git mv README.md README

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

However, this is equivalent to running something like this:

$ mv README.md README

$ git rm README.md

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that way or
with the mv command. The only real difference is that git mv is one command instead of three —
it’s a convenience function. More importantly, you can use any tool you like to rename a file, and
address the add/rm later, before you commit.

Moving Files

Git Basics

After you have created several commits, or if you have cloned a repository with an existing commit
history, you’ll probably want to look back to see what has happened. The most basic and powerful
tool to do this is the git log command.

These examples use a very simple project called “simplegit”. To get the project, run

$ git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

By default, with no arguments, git log lists the commits made in that repository in reverse
chronological order; that is, the most recent commits show up first. As you can see, this command
lists each commit with its SHA-1 checksum, the author’s name and email, the date written, and the
commit message.

A huge number and variety of options to the git log command are available to show you exactly
what you’re looking for. Here, we’ll show you some of the most popular.

Viewing the Commit History

One of the more helpful options is -p or --patch , which shows the difference (the patch output)
introduced in each commit. You can also limit the number of log entries displayed, such as using -
2 to show only the last two entries.

$ git log -p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require 'rake/gempackagetask'

 spec = Gem::Specification.new do |s|

 s.platform = Gem::Platform::RUBY

 s.name = "simplegit"

- s.version = "0.1.0"

+ s.version = "0.1.1"

 s.author = "Scott Chacon"

 s.email = "schacon@gee-mail.com"

 s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

 end

 end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

This option displays the same information but with a diff directly following each entry. This is very
helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. You can also use a series of summarizing options with git log . For
example, if you want to see some abbreviated stats for each commit, you can use the --stat
 option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

 Rakefile | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 lib/simplegit.rb | 5 -----

 1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 README | 6 ++++++

 Rakefile | 23 +++++++++++++++++++++++

 lib/simplegit.rb | 25 +++++++++++++++++++++++++

 3 files changed, 54 insertions(+)

As you can see, the --stat option prints below each commit entry a list of modified files, how
many files were changed, and how many lines in those files were added and removed. It also puts
a summary of the information at the end.

Another really useful option is --pretty . This option changes the log output to formats other than
the default. A few prebuilt options are available for you to use. The oneline option prints each
commit on a single line, which is useful if you’re looking at a lot of commits. In addition, the short ,
full , and fuller options show the output in roughly the same format but with less or more
information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the version number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log output format. This
is especially useful when you’re generating output for machine parsing — because you specify the
format explicitly, you know it won’t change with updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 6 years ago : changed the version number

085bb3b - Scott Chacon, 6 years ago : removed unnecessary test

a11bef0 - Scott Chacon, 6 years ago : first commit

Useful options for git log --pretty=format lists some of the more useful options that format takes.

Table 1. Useful options for git log --pretty=format
Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author email

%ad Author date (format respects the --date=option)

%ar Author date, relative

%cn Committer name

https://coderz.ca/progit/#pretty_format

Option Description of Output

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

You may be wondering what the difference is between author and committer. The author is the
person who originally wrote the work, whereas the committer is the person who last applied the
work. So, if you send in a patch to a project and one of the core members applies the patch, both of
you get credit — you as the author, and the core member as the committer. We’ll cover this
distinction a bit more in Distributed Git.

The oneline and format options are particularly useful with another log option called --graph .
This option adds a nice little ASCII graph showing your branch and merge history:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch 'defunkt' into local

This type of output will become more interesting as we go through branching and merging in the
next chapter.

Those are only some simple output-formatting options to git log — there are many more.
Common options to git log lists the options we’ve covered so far, as well as some other common
formatting options that may be useful, along with how they change the output of the log command.

Table 2. Common options to git log
Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat
Display only the changed/insertions/deletions line from the
--stat command.

https://coderz.ca/progit/#ch05-distributed-git
https://coderz.ca/progit/#log_options

Option Description

--name-only
Show the list of files modified after the commit
information.

--name-status
Show the list of files affected with added/modified/deleted
information as well.

--abbrev-commit
Show only the first few characters of the SHA-1 checksum
instead of all 40.

--relative-date
Display the date in a relative format (for example, “2
weeks ago”) instead of using the full date format.

--graph
Display an ASCII graph of the branch and merge history
beside the log output.

--pretty
Show commits in an alternate format. Options include
oneline, short, full, fuller, and format (where you specify
your own format).

--oneline
Shorthand for --pretty=oneline --abbrev-commit used
together.

Git Basics

In addition to output-formatting options, git log takes a number of useful limiting options; that is,
options that let you show only a subset of commits. You’ve seen one such option already — the -2
 option, which displays only the last two commits. In fact, you can do -<n> , where n is any integer
to show the last n commits. In reality, you’re unlikely to use that often, because Git by default
pipes all output through a pager so you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful. For example, this
command gets the list of commits made in the last two weeks:

$ git log --since=2.weeks

This command works with lots of formats — you can specify a specific date like "2008-01-15" , or a
relative date such as "2 years 1 day 3 minutes ago" .

You can also filter the list to commits that match some search criteria. The --author option allows
you to filter on a specific author, and the --grep option lets you search for keywords in the commit
messages.

You can specify more than one instance of both
the --author and --grep search criteria, which
will limit the commit output to commits that
match any of the --author patterns and any of
the --grep patterns; however, adding the --all-
match option further limits the output to just those
commits that match all --grep patterns.

Another really helpful filter is the -S option (colloquially referred to as Git’s “pickaxe” option),
which takes a string and shows only those commits that changed the number of occurrences of
that string. For instance, if you wanted to find the last commit that added or removed a reference
to a specific function, you could call:

$ git log -S function_name

The last really useful option to pass to git log as a filter is a path. If you specify a directory or file
name, you can limit the log output to commits that introduced a change to those files. This is
always the last option and is generally preceded by double dashes (--) to separate the paths from
the options.

Limiting Log Output

In Options to limit the output of git log we’ll list these and a few other common options for your
reference.

Table 3. Options to limit the output of git log
Option Description

-<n> Show only the last n commits

--since , --after Limit the commits to those made after the specified date.

--until , --before Limit the commits to those made before the specified
date.

--author
Only show commits in which the author entry matches the
specified string.

--committer
Only show commits in which the committer entry matches
the specified string.

--grep
Only show commits with a commit message containing the
string

-S
Only show commits adding or removing code matching the
string

For example, if you want to see which commits modifying test files in the Git source code history
were committed by Junio Hamano in the month of October 2008 and are not merge commits, you
can run something like this:

$ git log --pretty="%h - %s" --author='Junio C Hamano' --since="2008-10-01" \

 --before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attributes are in use

acd3b9e - Enhance hold_lock_file_for_{update,append}() API

f563754 - demonstrate breakage of detached checkout with symbolic link HEAD

d1a43f2 - reset --hard/read-tree --reset -u: remove unmerged new paths

51a94af - Fix "checkout --track -b newbranch" on detached HEAD

b0ad11e - pull: allow "git pull origin $something:$current_branch" into an unborn branch

Of the nearly 40,000 commits in the Git source code history, this command shows the 6 that match
those criteria.

https://coderz.ca/progit/#limit_options

Preventing the display of merge commits

Depending on the workflow used in your
repository, it’s possible that a sizable percentage
of the commits in your log history are just merge
commits, which typically aren’t very informative.
To prevent the display of merge commits cluttering
up your log history, simply add the log option --
no-merges .

Git Basics

At any stage, you may want to undo something. Here, we’ll review a few basic tools for undoing
changes that you’ve made. Be careful, because you can’t always undo some of these undos. This is
one of the few areas in Git where you may lose some work if you do it wrong.

One of the common undos takes place when you commit too early and possibly forget to add some
files, or you mess up your commit message. If you want to redo that commit, make the additional
changes you forgot, stage them, and commit again using the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve made no changes
since your last commit (for instance, you run this command immediately after your previous
commit), then your snapshot will look exactly the same, and all you’ll change is your commit
message.

The same commit-message editor fires up, but it already contains the message of your previous
commit. You can edit the message the same as always, but it overwrites your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a file you wanted
to add to this commit, you can do something like this:

$ git commit -m 'initial commit'

$ git add forgotten_file

$ git commit --amend

You end up with a single commit — the second commit replaces the results of the first.

It’s important to understand that when you’re amending your last commit, you’re not so much fixing it as
replacing it entirely with a new, improved commit that pushes the old commit out of the way and puts the new
commit in its place. Effectively, it’s as if the previous commit never happened, and it won’t show up in your
repository history.

The obvious value to amending commits is to make minor improvements to your last commit, without cluttering
your repository history with commit messages of the form, “Oops, forgot to add a file” or “Darn, fixing a typo in
last commit”.

Undoing Things

Git Basics

The next two sections demonstrate how to work with your staging area and working directory
changes. The nice part is that the command you use to determine the state of those two areas also
reminds you how to undo changes to them. For example, let’s say you’ve changed two files and
want to commit them as two separate changes, but you accidentally type git add * and stage
them both. How can you unstage one of the two? The git status command reminds you:

$ git add *

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

 modified: CONTRIBUTING.md

Right below the “Changes to be committed” text, it says use git reset HEAD <file>... to unstage.
So, let’s use that advice to unstage the CONTRIBUTING.md file:

$ git reset HEAD CONTRIBUTING.md

Unstaged changes after reset:

M	CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

Unstaging a Staged File

The command is a bit strange, but it works. The CONTRIBUTING.md file is modified but once again
unstaged.

It’s true that git reset can be a dangerous command, especially if you provide the --hard flag. However, in the
scenario described above, the file in your working directory is not touched, so it’s relatively safe.

For now this magic invocation is all you need to know about the git reset command. We’ll go into
much more detail about what reset does and how to master it to do really interesting things in
Reset Demystified.

https://coderz.ca/progit/#_git_reset

Git Basics

What if you realize that you don’t want to keep your changes to the CONTRIBUTING.md file? How can
you easily unmodify it — revert it back to what it looked like when you last committed (or initially
cloned, or however you got it into your working directory)? Luckily, git status tells you how to do
that, too. In the last example output, the unstaged area looks like this:

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

It tells you pretty explicitly how to discard the changes you’ve made. Let’s do what it says:

$ git checkout -- CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

You can see that the changes have been reverted.

It’s important to understand that git checkout -- <file> is a dangerous command. Any local changes you made
to that file are gone — Git just replaced that file with the most recently-committed version. Don’t ever use this
command unless you absolutely know that you don’t want those unsaved local changes.

If you would like to keep the changes you’ve made to that file but still need to get it out of the way
for now, we’ll go over stashing and branching in Git Branching; these are generally better ways to
go.

Remember, anything that is committed in Git can almost always be recovered. Even commits that
were on branches that were deleted or commits that were overwritten with an --amend commit can
be recovered (see Data Recovery for data recovery). However, anything you lose that was never
committed is likely never to be seen again.

Unmodifying a Modified File

https://coderz.ca/progit/#ch03-git-branching
https://coderz.ca/progit/#_data_recovery

Git Basics

To be able to collaborate on any Git project, you need to know how to manage your remote
repositories. Remote repositories are versions of your project that are hosted on the Internet or
network somewhere. You can have several of them, each of which generally is either read-only or
read/write for you. Collaborating with others involves managing these remote repositories and
pushing and pulling data to and from them when you need to share work. Managing remote
repositories includes knowing how to add remote repositories, remove remotes that are no longer
valid, manage various remote branches and define them as being tracked or not, and more. In this
section, we’ll cover some of these remote-management skills.

Working with Remotes

Remote repositories can be on your local machine.

It is entirely possible that you can be working with a “remote” repository that is, in fact, on
the same host you are. The word “remote” does not necessarily imply that the repository is
somewhere else on the network or Internet, only that it is elsewhere. Working with such a
remote repository would still involve all the standard pushing, pulling and fetching operations
as with any other remote.

Git Basics

To see which remote servers you have configured, you can run the git remote command. It lists
the shortnames of each remote handle you’ve specified. If you’ve cloned your repository, you
should at least see origin — that is the default name Git gives to the server you cloned from:

$ git clone https://github.com/schacon/ticgit

Cloning into 'ticgit'...

remote: Reusing existing pack: 1857, done.

remote: Total 1857 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.

Resolving deltas: 100% (772/772), done.

Checking connectivity... done.

$ cd ticgit

$ git remote

origin

You can also specify -v , which shows you the URLs that Git has stored for the shortname to be
used when reading and writing to that remote:

$ git remote -v

origin	https://github.com/schacon/ticgit (fetch)

origin	https://github.com/schacon/ticgit (push)

If you have more than one remote, the command lists them all. For example, a repository with
multiple remotes for working with several collaborators might look something like this.

$ cd grit

$ git remote -v

bakkdoor https://github.com/bakkdoor/grit (fetch)

bakkdoor https://github.com/bakkdoor/grit (push)

cho45 https://github.com/cho45/grit (fetch)

cho45 https://github.com/cho45/grit (push)

defunkt https://github.com/defunkt/grit (fetch)

defunkt https://github.com/defunkt/grit (push)

koke git://github.com/koke/grit.git (fetch)

koke git://github.com/koke/grit.git (push)

Showing Your Remotes

origin git@github.com:mojombo/grit.git (fetch)

origin git@github.com:mojombo/grit.git (push)

This means we can pull contributions from any of these users pretty easily. We may additionally
have permission to push to one or more of these, though we can’t tell that here.

Notice that these remotes use a variety of protocols; we’ll cover more about this in Getting Git on a
Server.

https://coderz.ca/progit/#_getting_git_on_a_server
https://coderz.ca/progit/#_getting_git_on_a_server

Git Basics

We’ve mentioned and given some demonstrations of how the git clone command implicitly adds
the origin remote for you. Here’s how to add a new remote explicitly. To add a new remote Git
repository as a shortname you can reference easily, run git remote add <shortname> <url> :

$ git remote

origin

$ git remote add pb https://github.com/paulboone/ticgit

$ git remote -v

origin	https://github.com/schacon/ticgit (fetch)

origin	https://github.com/schacon/ticgit (push)

pb	https://github.com/paulboone/ticgit (fetch)

pb	https://github.com/paulboone/ticgit (push)

Now you can use the string pb on the command line in lieu of the whole URL. For example, if you
want to fetch all the information that Paul has but that you don’t yet have in your repository, you
can run git fetch pb :

$ git fetch pb

remote: Counting objects: 43, done.

remote: Compressing objects: 100% (36/36), done.

remote: Total 43 (delta 10), reused 31 (delta 5)

Unpacking objects: 100% (43/43), done.

From https://github.com/paulboone/ticgit

 * [new branch] master -> pb/master

 * [new branch] ticgit -> pb/ticgit

Paul’s master branch is now accessible locally as pb/master — you can merge it into one of your
branches, or you can check out a local branch at that point if you want to inspect it. (We’ll go over
what branches are and how to use them in much more detail in Git Branching.)

Adding Remote Repositories

https://coderz.ca/progit/#ch03-git-branching

Git Basics

As you just saw, to get data from your remote projects, you can run:

$ git fetch <remote>

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet. After you do this, you should have references to all the branches from that
remote, which you can merge in or inspect at any time.

If you clone a repository, the command automatically adds that remote repository under the name
“origin”. So, git fetch origin fetches any new work that has been pushed to that server since you
cloned (or last fetched from) it. It’s important to note that the git fetch command only downloads
the data to your local repository — it doesn’t automatically merge it with any of your work or
modify what you’re currently working on. You have to merge it manually into your work when
you’re ready.

If your current branch is set up to track a remote branch (see the next section and Git Branching
 for more information), you can use the git pull command to automatically fetch and then merge
that remote branch into your current branch. This may be an easier or more comfortable workflow
for you; and by default, the git clone command automatically sets up your local master branch to
track the remote master branch (or whatever the default branch is called) on the server you cloned
from. Running git pull generally fetches data from the server you originally cloned from and
automatically tries to merge it into the code you’re currently working on.

Fetching and Pulling from Your
Remotes

https://coderz.ca/progit/#ch03-git-branching

Git Basics

When you have your project at a point that you want to share, you have to push it upstream. The
command for this is simple: git push <remote> <branch> . If you want to push your master branch to
your origin server (again, cloning generally sets up both of those names for you automatically),
then you can run this to push any commits you’ve done back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write access and if nobody
has pushed in the meantime. If you and someone else clone at the same time and they push
upstream and then you push upstream, your push will rightly be rejected. You’ll have to fetch their
work first and incorporate it into yours before you’ll be allowed to push. See Git Branching for more
detailed information on how to push to remote servers.

Pushing to Your Remotes

https://coderz.ca/progit/#ch03-git-branching

Git Basics

If you want to see more information about a particular remote, you can use the git remote show
<remote> command. If you run this command with a particular shortname, such as origin , you get
something like this:

$ git remote show origin

* remote origin

 Fetch URL: https://github.com/schacon/ticgit

 Push URL: https://github.com/schacon/ticgit

 HEAD branch: master

 Remote branches:

 master tracked

 dev-branch tracked

 Local branch configured for 'git pull':

 master merges with remote master

 Local ref configured for 'git push':

 master pushes to master (up to date)

It lists the URL for the remote repository as well as the tracking branch information. The command
helpfully tells you that if you’re on the master branch and you run git pull , it will automatically
merge in the master branch on the remote after it fetches all the remote references. It also lists all
the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more heavily, however,
you may see much more information from git remote show :

$ git remote show origin

* remote origin

 URL: https://github.com/my-org/complex-project

 Fetch URL: https://github.com/my-org/complex-project

 Push URL: https://github.com/my-org/complex-project

 HEAD branch: master

 Remote branches:

 master tracked

 dev-branch tracked

 markdown-strip tracked

Inspecting a Remote

 issue-43 new (next fetch will store in remotes/origin)

 issue-45 new (next fetch will store in remotes/origin)

 refs/remotes/origin/issue-11 stale (use 'git remote prune' to remove)

 Local branches configured for 'git pull':

 dev-branch merges with remote dev-branch

 master merges with remote master

 Local refs configured for 'git push':

 dev-branch pushes to dev-branch (up to date)

 markdown-strip pushes to markdown-strip (up to date)

 master pushes to master (up to date)

This command shows which branch is automatically pushed to when you run git push while on
certain branches. It also shows you which remote branches on the server you don’t yet have, which
remote branches you have that have been removed from the server, and multiple local branches
that are able to merge automatically with their remote-tracking branch when you run git pull .

Git Basics

You can run git remote rename to change a remote’s shortname. For instance, if you want to
rename pb to paul , you can do so with git remote rename :

$ git remote rename pb paul

$ git remote

origin

paul

It’s worth mentioning that this changes all your remote-tracking branch names, too. What used to
be referenced at pb/master is now at paul/master .

If you want to remove a remote for some reason — you’ve moved the server or are no longer using
a particular mirror, or perhaps a contributor isn’t contributing anymore — you can either use git
remote remove or git remote rm :

$ git remote remove paul

$ git remote

origin

Once you delete the reference to a remote this way, all remote-tracking branches and
configuration settings associated with that remote are also deleted.

Renaming and Removing Remotes

