
The main tool you use to determine which files are in which state is the git status command. If
you run this command directly after a clone, you should see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

This means you have a clean working directory; in other words, none of your tracked files are
modified. Git also doesn’t see any untracked files, or they would be listed here. Finally, the
command tells you which branch you’re on and informs you that it has not diverged from the same
branch on the server. For now, that branch is always “master”, which is the default; you won’t
worry about it here. Git Branching will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and
you run git status , you see your untracked file like so:

$ echo 'My Project' > README

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Untracked files”
heading in your status output. Untracked basically means that Git sees a file you didn’t have in the
previous snapshot (commit); Git won’t start including it in your commit snapshots until you
explicitly tell it to do so. It does this so you don’t accidentally begin including generated binary files
or other files that you did not mean to include. You do want to start including README , so let’s start
tracking the file.

Checking the Status of Your Files

Tracking New Files

https://coderz.ca/progit/#ch03-git-branching

In order to begin tracking a new file, you use the command git add . To begin tracking the README
 file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged
to be committed:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

You can tell that it’s staged because it’s under the “Changes to be committed” heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the
subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran
git add <files> — that was to begin tracking files in your directory. The git add command takes a
path name for either a file or a directory; if it’s a directory, the command adds all the files in that
directory recursively.

Let’s change a file that was already tracked. If you change a previously tracked file called
CONTRIBUTING.md and then run your git status command again, you get something that looks like
this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

Staging Modified Files

 modified: CONTRIBUTING.md

The CONTRIBUTING.md file appears under a section named “Changes not staged for commit” — which
means that a file that is tracked has been modified in the working directory but not yet staged. To
stage it, you run the git add command. git add is a multipurpose command — you use it to begin
tracking new files, to stage files, and to do other things like marking merge-conflicted files as
resolved. It may be helpful to think of it more as “add precisely this content to the next commit”
rather than “add this file to the project”. Let’s run git add now to stage the CONTRIBUTING.md file,
and then run git status again:

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and
make that change, and you’re ready to commit. However, let’s run git status one more time:

$ vim CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It
turns out that Git stages a file exactly as it is when you run the git add command. If you commit
now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it
will go into the commit, not the version of the file as it looks in your working directory when you
run git commit . If you modify a file after you run git add , you have to run git add again to stage
the latest version of the file:

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short
status flag so you can see your changes in a more compact way. If you run git status -s or git
status --short you get a far more simplified output from the command:

$ git status -s

 M README

MM Rakefile

A lib/git.rb

M lib/simplegit.rb

?? LICENSE.txt

New files that aren’t tracked have a ?? next to them, new files that have been added to the
staging area have an A , modified files have an M and so on. There are two columns to the output
— the left-hand column indicates the status of the staging area and the right-hand column
indicates the status of the working tree. So for example in that output, the README file is modified
in the working directory but not yet staged, while the lib/simplegit.rb file is modified and staged.
The Rakefile was modified, staged and then modified again, so there are changes to it that are
both staged and unstaged.

Short Status

Revision #1
Created 16 April 2019 19:55:01 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

