
Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple,
but it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally
write to the wrong file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database
that kept all the changes to files under revision control.

Local version control diagramImage not found or type unknown
Figure 1. Local version control.
One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a
special format on disk; it can then re-create what any file looked like at any point in time by adding
up all the patches.

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that
contains all the versioned files, and a number of clients that check out files from that central place.
For many years, this has been the standard for version control.

Centralized version control diagramImage not found or type unknown
Figure 2. Centralized version control.
This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and it’s far easier to administer a CVCS than it is to deal with local
databases on every client.

However, this setup also has some serious downsides. The most obvious is the single point of
failure that the centralized server represents. If that server goes down for an hour, then during that
hour nobody can collaborate at all or save versioned changes to anything they’re working on. If the
hard disk the central database is on becomes corrupted, and proper backups haven’t been kept,
you lose absolutely everything — the entire history of the project except whatever single snapshots
people happen to have on their local machines. Local VCS systems suffer from this same problem
— whenever you have the entire history of the project in a single place, you risk losing everything.

Control Systems
Local Version Control Systems

Centralized Version Control Systems

Distributed Version Control Systems



This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git,
Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of the files; rather, they
fully mirror the repository, including its full history. Thus, if any server dies, and these systems
were collaborating via that server, any of the client repositories can be copied back up to the
server to restore it. Every clone is really a full backup of all the data.

Distributed version control diagramImage not found or type unknown
Figure 3. Distributed version control.
Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

Revision #1
Created 16 April 2019 19:36:07 by ClassCloud
Updated 16 April 2019 19:42:00 by ClassCloud


