
Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; they’ll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that
control all aspects of how Git looks and operates. These variables can be stored in three different
places:

1. /etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config , it reads and writes from this
file specifically. (Because this is a system configuration file, you would need
administrative or superuser privilege to make changes to it.)

2. ~/.gitconfig or ~/.config/git/config file: Values specific personally to you, the user. You
can make Git read and write to this file specifically by passing the --global option, and
this affects all of the repositories you work with on your system.

3. config file in the Git directory (that is, .git/config) of whatever repository you’re
currently using: Specific to that single repository. You can force Git to read from and write
to this file with the --local option, but that is in fact the default. (Unsurprisingly, you
need to be located somewhere in a Git repository for this option to work properly.)

Each level overrides values in the previous level, so values in .git/config trump those in
/etc/gitconfig .

On Windows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Users\$USER for
most people). It also still looks for /etc/gitconfig , although it’s relative to the MSys root, which is
wherever you decide to install Git on your Windows system when you run the installer. If you are
using version 2.x or later of Git for Windows, there is also a system-level config file at C:\Documents
and Settings\All Users\Application Data\Git\config on Windows XP, and in
C:\ProgramData\Git\config on Windows Vista and newer. This config file can only be changed by
git config -f <file> as an admin.

You can view all of your settings and where they are coming from using:

$ git config --list --show-origin

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and it’s immutably baked into the

First-Time Git Setup

Your Identity

commits you start creating:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or email address for specific projects, you can run the command without the --
global option when you’re in that project.

Many of the GUI tools will help you do this when you first run them.

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your system’s default editor.

If you want to use a different text editor, such as Emacs, you can do the following:

$ git config --global core.editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to
its executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesn’t support all plug-ins. If you are on a
32-bit Windows system, or you have a 64-bit editor on a 64-bit system, you’ll type something like
this:

$ git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe' -multiInst -

nosession"

If you have a 32-bit editor on a 64-bit system, the program will be installed in C:\Program Files
(x86) :

$ git config --global core.editor "'C:/Program Files (x86)/Notepad++/notepad++.exe' -multiInst

-nosession"

Vim, Emacs and Notepad++ are popular text editors often
used by developers on Unix-based systems like Linux and
macOS or a Windows system. If you are not familiar with
these editors, you may need to search for specific
instructions for how to set up your favorite editor with Git.

Your Editor

You may find, if you don’t setup your editor like this, you
get into a really confusing state when Git attempts to
launch it. An example on a Windows system may include a
prematurely terminated Git operation during a Git initiated
edit.

If you want to check your configuration settings, you can use the git config --list command to
list all the settings Git can find at that point:

$ git config --list

user.name=John Doe

user.email=johndoe@example.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different files (
/etc/gitconfig and ~/.gitconfig , for example). In this case, Git uses the last value for each unique
key it sees.

You can also check what Git thinks a specific key’s value is by typing git config <key> :

$ git config user.name

John Doe

Since Git might read the same configuration variable value
from more than one file, it’s possible that you have an
unexpected value for one of these values and you don’t
know why. In cases like that, you can query Git as to the
origin for that value, and it will tell you which configuration
file had the final say in setting that value:

$ git config --show-origin

rerere.autoUpdate

file:/home/johndoe/.gitconfig	false

Checking Your Settings

Getting Help

If you ever need help while using Git, there are two equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

$ git help <verb>

$ man git-<verb>

For example, you can get the manpage help for the git config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book aren’t enough and you need in-person help, you can try the #git or #github channel
on the Freenode IRC server, which can be found at https://freenode.net. These channels are
regularly filled with hundreds of people who are all very knowledgeable about Git and are often
willing to help.

In addition, if you don’t need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise “help” output with the -h
 or --help options, as in:

$ git add -h

usage: git add [<options>] [--] <pathspec>...

 -n, --dry-run dry run

 -v, --verbose be verbose

 -i, --interactive interactive picking

 -p, --patch select hunks interactively

 -e, --edit edit current diff and apply

 -f, --force allow adding otherwise ignored files

 -u, --update update tracked files

 --renormalize renormalize EOL of tracked files (implies -u)

 -N, --intent-to-add record only the fact that the path will be added later

 -A, --all add changes from all tracked and untracked files

 --ignore-removal ignore paths removed in the working tree (same as --no-all)

 --refresh don't add, only refresh the index

 --ignore-errors just skip files which cannot be added because of errors

 --ignore-missing check if - even missing - files are ignored in dry run

 --chmod (+|-)x override the executable bit of the listed files

https://freenode.net/

You should have a basic understanding of what Git is and how it’s different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system that’s set up with your personal identity. It’s now time to learn some
Git basics.

Summary

Revision #1
Created 16 April 2019 19:49:00 by ClassCloud
Updated 16 April 2019 19:49:28 by ClassCloud

