
You typically obtain a Git repository in one of two ways:

1. You can take a local directory that is currently not under version control, and turn it into a
Git repository, or

2. You can clone an existing Git repository from elsewhere.

In either case, you end up with a Git repository on your local machine, ready for work.

If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that project’s directory. If you’ve never done this, it
looks a little different depending on which system you’re running:

for Linux:

$ cd /home/user/my_project

for macOS:

$ cd /Users/user/my_project

for Windows:

$ cd /c/user/my_project

and type:

$ git init

This creates a new subdirectory named  .git  that contains all of your necessary repository files —
a Git repository skeleton. At this point, nothing in your project is tracked yet. (See Git Internals for
more information about exactly what files are contained in the  .git  directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. You can accomplish that with a few 
git add  commands that specify the files you want to track, followed by a  git commit :

Getting a Git Repository

Initializing a Repository in an Existing Directory

https://coderz.ca/progit/#ch10-git-internals


$ git add *.c

$ git add LICENSE

$ git commit -m 'initial project version'

We’ll go over what these commands do in just a minute. At this point, you have a Git repository
with tracked files and an initial commit.

If you want to get a copy of an existing Git repository — for example, a project you’d like to
contribute to — the command you need is  git clone . If you’re familiar with other VCS systems
such as Subversion, you’ll notice that the command is "clone" and not "checkout". This is an
important distinction — instead of getting just a working copy, Git receives a full copy of nearly all
data that the server has. Every version of every file for the history of the project is pulled down by
default when you run  git clone . In fact, if your server disk gets corrupted, you can often use
nearly any of the clones on any client to set the server back to the state it was in when it was
cloned (you may lose some server-side hooks and such, but all the versioned data would be there
— see Getting Git on a Server for more details).

You clone a repository with  git clone <url> . For example, if you want to clone the Git linkable
library called  libgit2 , you can do so like this:

$ git clone https://github.com/libgit2/libgit2

That creates a directory named  libgit2 , initializes a  .git  directory inside it, pulls down all the
data for that repository, and checks out a working copy of the latest version. If you go into the new 
libgit2  directory that was just created, you’ll see the project files in there, ready to be worked on
or used.

If you want to clone the repository into a directory named something other than  libgit2 , you can
specify the new directory name as an additional argument:

$ git clone https://github.com/libgit2/libgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called  mylibgit
.

Git has a number of different transfer protocols you can use. The previous example uses the 
https://  protocol, but you may also see  git://  or  user@server:path/to/repo.git , which uses the
SSH transfer protocol. Getting Git on a Serverwill introduce all of the available options the server
can set up to access your Git repository and the pros and cons of each.

Cloning an Existing Repository

Revision #1
Created 16 April 2019 19:52:40 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

https://coderz.ca/progit/#_getting_git_on_a_server
https://coderz.ca/progit/#_getting_git_on_a_server

