
Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore . Here is an example .gitignore file:

$ cat .gitignore

*.[oa]

*~

The first line tells Git to ignore any files ending in “.o” or “.a” — object and archive files that may
be the product of building your code. The second line tells Git to ignore all files whose names end
with a tilde (~), which is used by many text editors such as Emacs to mark temporary files. You
may also include a log, tmp, or pid directory; automatically generated documentation; and so on.
Setting up a .gitignore file for your new repository before you get going is generally a good idea
so you don’t accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.
Standard glob patterns work, and will be applied recursively throughout the entire working
tree.
You can start patterns with a forward slash (/) to avoid recursivity.
You can end patterns with a forward slash (/) to specify a directory.
You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero
or more characters; [abc] matches any character inside the brackets (in this case a, b, or c); a
question mark (?) matches a single character; and brackets enclosing characters separated by a
hyphen ([0-9]) matches any character between them (in this case 0 through 9). You can also use
two asterisks to match nested directories; a/**/z would match a/z , a/b/z , a/b/c/z , and so on.

Here is another example .gitignore file:

ignore all .a files

*.a

but do track lib.a, even though you're ignoring .a files above

!lib.a

Ignoring Files

only ignore the TODO file in the current directory, not subdir/TODO

/TODO

ignore all files in any directory named build

build/

ignore doc/notes.txt, but not doc/server/arch.txt

doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories

doc/**/*.pdf

GitHub maintains a fairly comprehensive list of good
.gitignore file examples for dozens of projects and

languages at https://github.com/github/gitignore if you
want a starting point for your project.

In the simple case, a repository might have a single
.gitignore file in its root directory, which applies

recursively to the entire repository. However, it is also
possible to have additional .gitignore files in
subdirectories. The rules in these nested .gitignore files
apply only to the files under the directory where they are
located. (The Linux kernel source repository has 206
.gitignore files.)

It is beyond the scope of this book to get into the details of
multiple .gitignore files; see man gitignore for the
details.

Revision #1
Created 16 April 2019 20:07:27 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

https://github.com/github/gitignore

