
To remove a file from Git, you have to remove it from your tracked files (more accurately, remove
it from your staging area) and then commit. The git rm command does that, and also removes the
file from your working directory so you don’t see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the “Changes not
staged for commit” (that is, unstaged) area of your git status output:

$ rm PROJECTS.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

Then, if you run git rm , it stages the file’s removal:

$ git rm PROJECTS.md

rm 'PROJECTS.md'

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: PROJECTS.md

The next time you commit, the file will be gone and no longer tracked. If you modified the file or
had already added it to the staging area, you must force the removal with the -f option. This is a
safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snapshot
and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have

Removing Files

Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore
 file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use
the --cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can
do things such as:

$ git rm log/*.log

Note the backslash (\) in front of the * . This is necessary because Git does its own filename
expansion in addition to your shell’s filename expansion. This command removes all files that have
the .log extension in the log/ directory. Or, you can do something like this:

$ git rm *~

This command removes all files whose names end with a ~ .

Revision #1
Created 16 April 2019 20:11:21 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

