
The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the
information they store as a set of files and the changes made to each file over time (this is
commonly described as delta-based version control).

Storing data as changes to a base version of each file.Image not found or type unknown
Figure 4. Storing data as changes to a base version of each file.
Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a series of
snapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file
again, just a link to the previous identical file it has already stored. Git thinks about its data more
like a stream of snapshots.

Git stores data as snapshots of the project over time.Image not found or type unknown
Figure 5. Storing data as snapshots of the project over time.
This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. We’ll explore some of the benefits you gain by thinking of your
data this way when we cover Git branching in Git Branching.

Snapshots, Not Differences

Revision #1
Created 16 April 2019 19:40:46 by ClassCloud
Updated 16 April 2019 19:42:00 by ClassCloud

https://coderz.ca/progit/#ch03-git-branching

