
The next two sections demonstrate how to work with your staging area and working directory
changes. The nice part is that the command you use to determine the state of those two areas also
reminds you how to undo changes to them. For example, let’s say you’ve changed two files and
want to commit them as two separate changes, but you accidentally type git add * and stage
them both. How can you unstage one of the two? The git status command reminds you:

$ git add *

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

 modified: CONTRIBUTING.md

Right below the “Changes to be committed” text, it says use git reset HEAD <file>... to unstage.
So, let’s use that advice to unstage the CONTRIBUTING.md file:

$ git reset HEAD CONTRIBUTING.md

Unstaged changes after reset:

M	CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

The command is a bit strange, but it works. The CONTRIBUTING.md file is modified but once again
unstaged.

Unstaging a Staged File

It’s true that git reset can be a dangerous command, especially if you provide the --hard flag. However, in the
scenario described above, the file in your working directory is not touched, so it’s relatively safe.

For now this magic invocation is all you need to know about the git reset command. We’ll go into
much more detail about what reset does and how to master it to do really interesting things in
Reset Demystified.

Revision #1
Created 16 April 2019 20:18:22 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

https://coderz.ca/progit/#_git_reset

