
After you have created several commits, or if you have cloned a repository with an existing commit
history, you’ll probably want to look back to see what has happened. The most basic and powerful
tool to do this is the git log command.

These examples use a very simple project called “simplegit”. To get the project, run

$ git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

By default, with no arguments, git log lists the commits made in that repository in reverse
chronological order; that is, the most recent commits show up first. As you can see, this command
lists each commit with its SHA-1 checksum, the author’s name and email, the date written, and the
commit message.

A huge number and variety of options to the git log command are available to show you exactly
what you’re looking for. Here, we’ll show you some of the most popular.

Viewing the Commit History

One of the more helpful options is -p or --patch , which shows the difference (the patch output)
introduced in each commit. You can also limit the number of log entries displayed, such as using -
2 to show only the last two entries.

$ git log -p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require 'rake/gempackagetask'

 spec = Gem::Specification.new do |s|

 s.platform = Gem::Platform::RUBY

 s.name = "simplegit"

- s.version = "0.1.0"

+ s.version = "0.1.1"

 s.author = "Scott Chacon"

 s.email = "schacon@gee-mail.com"

 s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

 end

 end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

This option displays the same information but with a diff directly following each entry. This is very
helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. You can also use a series of summarizing options with git log . For
example, if you want to see some abbreviated stats for each commit, you can use the --stat
 option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

 Rakefile | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 lib/simplegit.rb | 5 -----

 1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 README | 6 ++++++

 Rakefile | 23 +++++++++++++++++++++++

 lib/simplegit.rb | 25 +++++++++++++++++++++++++

 3 files changed, 54 insertions(+)

As you can see, the --stat option prints below each commit entry a list of modified files, how
many files were changed, and how many lines in those files were added and removed. It also puts
a summary of the information at the end.

Another really useful option is --pretty . This option changes the log output to formats other than
the default. A few prebuilt options are available for you to use. The oneline option prints each
commit on a single line, which is useful if you’re looking at a lot of commits. In addition, the short ,
full , and fuller options show the output in roughly the same format but with less or more
information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the version number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log output format. This
is especially useful when you’re generating output for machine parsing — because you specify the
format explicitly, you know it won’t change with updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 6 years ago : changed the version number

085bb3b - Scott Chacon, 6 years ago : removed unnecessary test

a11bef0 - Scott Chacon, 6 years ago : first commit

Useful options for git log --pretty=format lists some of the more useful options that format takes.

Table 1. Useful options for git log --pretty=format
Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author email

%ad Author date (format respects the --date=option)

%ar Author date, relative

%cn Committer name

https://coderz.ca/progit/#pretty_format

Option Description of Output

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

You may be wondering what the difference is between author and committer. The author is the
person who originally wrote the work, whereas the committer is the person who last applied the
work. So, if you send in a patch to a project and one of the core members applies the patch, both of
you get credit — you as the author, and the core member as the committer. We’ll cover this
distinction a bit more in Distributed Git.

The oneline and format options are particularly useful with another log option called --graph .
This option adds a nice little ASCII graph showing your branch and merge history:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch 'defunkt' into local

This type of output will become more interesting as we go through branching and merging in the
next chapter.

Those are only some simple output-formatting options to git log — there are many more.
Common options to git log lists the options we’ve covered so far, as well as some other common
formatting options that may be useful, along with how they change the output of the log command.

Table 2. Common options to git log
Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat
Display only the changed/insertions/deletions line from the
--stat command.

https://coderz.ca/progit/#ch05-distributed-git
https://coderz.ca/progit/#log_options

Option Description

--name-only
Show the list of files modified after the commit
information.

--name-status
Show the list of files affected with added/modified/deleted
information as well.

--abbrev-commit
Show only the first few characters of the SHA-1 checksum
instead of all 40.

--relative-date
Display the date in a relative format (for example, “2
weeks ago”) instead of using the full date format.

--graph
Display an ASCII graph of the branch and merge history
beside the log output.

--pretty
Show commits in an alternate format. Options include
oneline, short, full, fuller, and format (where you specify
your own format).

--oneline
Shorthand for --pretty=oneline --abbrev-commit used
together.

Revision #1
Created 16 April 2019 20:12:43 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

