
If the git status command is too vague for you — you want to know exactly what you changed,
not just which files were changed — you can use the git diff command. We’ll cover git diff in
more detail later, but you’ll probably use it most often to answer these two questions: What have
you changed but not yet staged? And what have you staged that you are about to commit?
Although git status answers those questions very generally by listing the file names, git diff
 shows you the exact lines added and removed — the patch, as it were.

Let’s say you edit and stage the README file again and then edit the CONTRIBUTING.md file without
staging it. If you run your git status command, you once again see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

To see what you’ve changed but not yet staged, type git diff with no other arguments:

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your PR;

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your change

Viewing Your Staged and Unstaged
Changes

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR

 that highlights your work in progress (and note in the PR title that it's

That command compares what is in your working directory with what is in your staging area. The
result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use git diff --
staged . This command compares your staged changes to your last commit:

$ git diff --staged

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+My Project

It’s important to note that git diff by itself doesn’t show all changes made since your last commit
— only changes that are still unstaged. If you’ve staged all of your changes, git diff will give you
no output.

For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to
see the changes in the file that are staged and the changes that are unstaged. If our environment
looks like this:

$ git add CONTRIBUTING.md

$ echo '# test line' >> CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: CONTRIBUTING.md

Now you can use git diff to see what is still unstaged:

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 643e24f..87f08c8 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -119,3 +119,4 @@ at the

 ## Starter Projects

 See our [projects list](https://github.com/libgit2/libgit2/blob/development/PROJECTS.md).

+# test line

and git diff --cached to see what you’ve staged so far (--staged and --cached are synonyms):

$ git diff --cached

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your PR;

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your change

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR

 that highlights your work in progress (and note in the PR title that it's

We will continue to use the git diff command in various
ways throughout the rest of the book. There is another
way to look at these diffs if you prefer a graphical or
external diff viewing program instead. If you run git
difftool instead of git diff , you can view any of these
diffs in software like emerge, vimdiff and many more
(including commercial products). Run git difftool --
tool-help to see what is available on your system.

Git Diff in an External Tool

Revision #1
Created 16 April 2019 20:08:12 by ClassCloud
Updated 16 April 2019 20:33:57 by ClassCloud

